3.1069 \(\int \frac{1}{x^{5/2} (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=371 \[ \frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{2}{3 a x^{3/2}} \]

[Out]

-2/(3*a*x^(3/2)) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c]
)^(1/4)])/(2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1
/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 - b/Sqr
t[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*a*(-b - Sqrt[b^2 -
 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c]
)^(1/4)])/(2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.512135, antiderivative size = 371, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1115, 1368, 1422, 212, 208, 205} \[ \frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{2}{3 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*(a + b*x^2 + c*x^4)),x]

[Out]

-2/(3*a*x^(3/2)) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c]
)^(1/4)])/(2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1
/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 - b/Sqr
t[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*a*(-b - Sqrt[b^2 -
 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c]
)^(1/4)])/(2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1368

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a +
 b*x^n + c*x^(2*n))^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^{5/2} \left (a+b x^2+c x^4\right )} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{x^4 \left (a+b x^4+c x^8\right )} \, dx,x,\sqrt{x}\right )\\ &=-\frac{2}{3 a x^{3/2}}+\frac{2 \operatorname{Subst}\left (\int \frac{-3 b-3 c x^4}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )}{3 a}\\ &=-\frac{2}{3 a x^{3/2}}-\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{a}-\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{a}\\ &=-\frac{2}{3 a x^{3/2}}+\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{a \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{a \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{a \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{a \sqrt{-b+\sqrt{b^2-4 a c}}}\\ &=-\frac{2}{3 a x^{3/2}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} a \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} a \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} a \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} a \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0527408, size = 82, normalized size = 0.22 \[ -\frac{3 \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 c \log \left (\sqrt{x}-\text{$\#$1}\right )+b \log \left (\sqrt{x}-\text{$\#$1}\right )}{\text{$\#$1}^3 b+2 \text{$\#$1}^7 c}\& \right ]+\frac{4}{x^{3/2}}}{6 a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*(a + b*x^2 + c*x^4)),x]

[Out]

-(4/x^(3/2) + 3*RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[Sqrt[x] - #1] + c*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c
*#1^7) & ])/(6*a)

________________________________________________________________________________________

Maple [C]  time = 0.261, size = 64, normalized size = 0.2 \begin{align*}{\frac{1}{2\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{-{{\it \_R}}^{4}c-b}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }}-{\frac{2}{3\,a}{x}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/(c*x^4+b*x^2+a),x)

[Out]

1/2/a*sum((-_R^4*c-b)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))-2/3/a/x^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{2 \,{\left (3 \, b \sqrt{x} + \frac{a}{x^{\frac{3}{2}}}\right )}}{3 \, a^{2}} + \int \frac{b c x^{\frac{7}{2}} +{\left (b^{2} - a c\right )} x^{\frac{3}{2}}}{a^{2} c x^{4} + a^{2} b x^{2} + a^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

-2/3*(3*b*sqrt(x) + a/x^(3/2))/a^2 + integrate((b*c*x^(7/2) + (b^2 - a*c)*x^(3/2))/(a^2*c*x^4 + a^2*b*x^2 + a^
3), x)

________________________________________________________________________________________

Fricas [B]  time = 15.2903, size = 14453, normalized size = 38.96 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(12*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c +
16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6
*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*arct
an(-1/4*(sqrt(1/2)*(b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^
5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 + (a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7*c^2 - 364*a^10*b^5*c^3 + 560*a^11*b^
3*c^4 - 320*a^12*b*c^5)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b
^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(4*(b^12*c^4 - 10*a*b^10*c^
5 + 37*a^2*b^8*c^6 - 62*a^3*b^6*c^7 + 46*a^4*b^4*c^8 - 12*a^5*b^2*c^9 + a^6*c^10)*x + 2*sqrt(1/2)*(b^18 - 18*a
*b^16*c + 135*a^2*b^14*c^2 - 546*a^3*b^12*c^3 + 1288*a^4*b^10*c^4 - 1792*a^5*b^8*c^5 + 1421*a^6*b^6*c^6 - 592*
a^7*b^4*c^7 + 114*a^8*b^2*c^8 - 8*a^9*c^9 + (a^7*b^15 - 19*a^8*b^13*c + 148*a^9*b^11*c^2 - 605*a^10*b^9*c^3 +
1374*a^11*b^7*c^4 - 1672*a^12*b^5*c^5 + 928*a^13*b^3*c^6 - 128*a^14*b*c^7)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b
^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c
^2 - 64*a^17*c^3)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^
2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^
14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(-(b^7 -
7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*
a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*
b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)) + 2*sqrt(1/2)*(b^20*c^2 - 21*a*b^18*c^3 + 188*a
^2*b^16*c^4 - 935*a^3*b^14*c^5 + 2821*a^4*b^12*c^6 - 5292*a^5*b^10*c^7 + 6083*a^6*b^8*c^8 - 4071*a^7*b^6*c^9 +
 1449*a^8*b^4*c^10 - 248*a^9*b^2*c^11 + 16*a^10*c^12 + (a^7*b^17*c^2 - 22*a^8*b^15*c^3 + 204*a^9*b^13*c^4 - 10
32*a^10*b^11*c^5 + 3075*a^11*b^9*c^6 - 5417*a^12*b^7*c^7 + 5324*a^13*b^5*c^8 - 2480*a^14*b^3*c^9 + 320*a^15*b*
c^10)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/
(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(x)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 -
 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3
 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^
7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^
7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4
- 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*
c + 16*a^9*c^2)))/(b^12*c^7 - 10*a*b^10*c^8 + 37*a^2*b^8*c^9 - 62*a^3*b^6*c^10 + 46*a^4*b^4*c^11 - 12*a^5*b^2*
c^12 + a^6*c^13)) - 12*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 -
 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^
5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*
a^9*c^2)))*arctan(1/4*(sqrt(1/2)*(b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 -
457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 - (a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7*c^2 - 364*a^10*b^5*c^3
 + 560*a^11*b^3*c^4 - 320*a^12*b*c^5)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*
c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(4*(b^12*c^4
- 10*a*b^10*c^5 + 37*a^2*b^8*c^6 - 62*a^3*b^6*c^7 + 46*a^4*b^4*c^8 - 12*a^5*b^2*c^9 + a^6*c^10)*x + 2*sqrt(1/2
)*(b^18 - 18*a*b^16*c + 135*a^2*b^14*c^2 - 546*a^3*b^12*c^3 + 1288*a^4*b^10*c^4 - 1792*a^5*b^8*c^5 + 1421*a^6*
b^6*c^6 - 592*a^7*b^4*c^7 + 114*a^8*b^2*c^8 - 8*a^9*c^9 - (a^7*b^15 - 19*a^8*b^13*c + 148*a^9*b^11*c^2 - 605*a
^10*b^9*c^3 + 1374*a^11*b^7*c^4 - 1672*a^12*b^5*c^5 + 928*a^13*b^3*c^6 - 128*a^14*b*c^7)*sqrt((b^12 - 10*a*b^1
0*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c +
 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2
*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5
+ a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))
*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*s
qrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b
^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(-(b^7 - 7*a*
b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*
b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*
c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)) + 2*sqrt(1/2)*(b^20*c^2 - 21*a*b^18*c^3 + 188*a^2*b
^16*c^4 - 935*a^3*b^14*c^5 + 2821*a^4*b^12*c^6 - 5292*a^5*b^10*c^7 + 6083*a^6*b^8*c^8 - 4071*a^7*b^6*c^9 + 144
9*a^8*b^4*c^10 - 248*a^9*b^2*c^11 + 16*a^10*c^12 - (a^7*b^17*c^2 - 22*a^8*b^15*c^3 + 204*a^9*b^13*c^4 - 1032*a
^10*b^11*c^5 + 3075*a^11*b^9*c^6 - 5417*a^12*b^7*c^7 + 5324*a^13*b^5*c^8 - 2480*a^14*b^3*c^9 + 320*a^15*b*c^10
)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^1
4*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^
2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*
a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17
*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^
4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12
*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c +
16*a^9*c^2)))/(b^12*c^7 - 10*a*b^10*c^8 + 37*a^2*b^8*c^9 - 62*a^3*b^6*c^10 + 46*a^4*b^4*c^11 - 12*a^5*b^2*c^12
 + a^6*c^13)) - 3*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^
8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2
*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c
^2)))*log(-2*(b^6*c^2 - 5*a*b^4*c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*sqrt(x) + (b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 2
5*a^3*b^3*c^3 + 4*a^4*b*c^4 - (a^7*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c
 + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48
*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4
 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*
a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 1
6*a^9*c^2)))) + 3*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^
8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2
*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c
^2)))*log(-2*(b^6*c^2 - 5*a*b^4*c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*sqrt(x) - (b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 2
5*a^3*b^3*c^3 + 4*a^4*b*c^4 - (a^7*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c
 + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48
*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4
 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*
a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 1
6*a^9*c^2)))) - 3*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^
8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2
*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c
^2)))*log(-2*(b^6*c^2 - 5*a*b^4*c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*sqrt(x) + (b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 2
5*a^3*b^3*c^3 + 4*a^4*b*c^4 + (a^7*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c
 + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48
*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4
 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*
a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 1
6*a^9*c^2)))) + 3*a*x^2*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^
8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2
*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c
^2)))*log(-2*(b^6*c^2 - 5*a*b^4*c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*sqrt(x) - (b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 2
5*a^3*b^3*c^3 + 4*a^4*b*c^4 + (a^7*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c
 + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48
*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4
 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*
a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 1
6*a^9*c^2)))) - 4*sqrt(x))/(a*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{4} + b x^{2} + a\right )} x^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)*x^(5/2)), x)